PNQ Premixed Concrete Wash Out Waste

Pioneer North Queensland Pty Ltd

Chemwatch: **7962-66** Version No: **2.1**

Safety Data Sheet according to Work Health and Safety Regulations (Hazardous Chemicals) 2023 and ADG requirements

Initial Date: 01/07/2025 Revision Date: 01/07/2025 Print Date: 02/07/2025 L.GHS.AUS.EN.E

SECTION 1 Identification of the substance / mixture and of the company / undertaking

Product Identifier	
Product name	PNQ Premixed Concrete Wash Out Waste
Chemical Name	Not Applicable
Synonyms	Not Available

Chemical formula Not Applicable

Other means of identification Not Available

Relevant identified uses of the substance or mixture and uses advised against

Relevant identified uses	Concrete Wash out waste.
Relevant Identified uses	Use according to manufacturer's directions.

Details of the manufacturer or importer of the safety data sheet

Registered company name	Pioneer North Queensland Pty Ltd
Address	Lot 5, Maconachie Street Woree QLD 4870 Australia
Telephone	+61 7 4047 8300
Fax	+61 7 4047 8311
Website	Not Available
Email	Not Available

Emergency telephone number

Association / Organisation	Pioneer North Queensland Pty Ltd
Emergency telephone number(s)	1800 882 478
Other emergency telephone number(s)	Not Available

SECTION 2 Hazards identification

Classification of the substance or mixture

Poisons Schedule Not Applicable	
Classification [1]	Skin Corrosion/Irritation Category 2, Sensitisation (Skin) Category 1, Serious Eye Damage/Eye Irritation Category 1, Specific Target Organ Toxicity - Single Exposure (Respiratory Tract Irritation) Category 3, Germ Cell Mutagenicity Category 2, Specific Target Organ Toxicity - Repeated Exposure Category 2
Legend:	1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI

Label elements

Hazard pictogram(s)

Signal word

Danger

Hazard statement(s)

H315	Causes skin irritation.
H317	May cause an allergic skin reaction.
H318	Causes serious eye damage.
H335	May cause respiratory irritation.
H341	Suspected of causing genetic defects.
H373	May cause damage to organs through prolonged or repeated exposure.

Precautionary statement(s) Prevention

Chemwatch: 7962-66 Version No: 2.1

Page 2 of 16 PNQ Premixed Concrete Wash Out Waste

Initial Date: 01/07/2025 Revision Date: 01/07/2025 Print Date: 02/07/2025

P260	P260 Do not breathe mist/vapours/spray.	
P271	Use only outdoors or in a well-ventilated area.	
P280	Wear protective gloves, protective clothing, eye protection and face protection.	
P202	Do not handle until all safety precautions have been read and understood.	
P264	Wash all exposed external body areas thoroughly after handling.	
P272	Contaminated work clothing should not be allowed out of the workplace.	

Precautionary statement(s) Response

P305+P351+P338	38 IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.	
P308+P313	P308+P313 IF exposed or concerned: Get medical advice/ attention.	
P310 Immediately call a POISON CENTER/doctor/physician/first aider.		
P302+P352	P302+P352 IF ON SKIN: Wash with plenty of water.	
P333+P313	If skin irritation or rash occurs: Get medical advice/attention.	
P362+P364	Take off contaminated clothing and wash it before reuse.	
P304+P340	IF INHALED: Remove person to fresh air and keep comfortable for breathing.	

Precautionary statement(s) Storage

P405	Store locked up.	
P403+P233	Store in a well-ventilated place. Keep container tightly closed.	

Precautionary statement(s) Disposal

P501 Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation.

No further product hazard information.

SECTION 3 Composition / information on ingredients

Substances

See section below for composition of Mixtures

Mixtures

CAS No	%[weight]	Name
14808-60-7	20-85	silica crystalline - quartz
Not Available	20-85	Crushed Stone, Gravel or Blast Furnace Slag
65997-15-1	10-60	portland cement
1333-82-0	2-20 ppm	chromium trioxide
7732-18-5	0-20	water
Not Available		Other ingredients may be added:
Not Available	0-20	Blast Furnace Slag or Fly Ash
Not Available	0-10	Pigments: (metallic oxide colours)
7699-41-4	0-10	silica gel
Not Available	2-10	Chemical Admixtures:
9003-53-6	0-60	polystyrene
Not Available	0-2	Polypropylene Fibres
Not Available	0-2	Steel Fibres
Legend:	Classified by Chemwatch; 2. Classification drawn from C&L	Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI; 4. * EU IOELVs available

SECTION 4 First aid measures

Description of first aid measures

Eye Contact	If this product comes in contact with the eyes: Immediately hold eyelids apart and flush the eye continuously with running water. Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. Continue flushing until advised to stop by the Poisons Information Centre or a doctor, or for at least 15 minutes. Transport to hospital or doctor without delay. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.
Skin Contact	If skin contact occurs: Immediately remove all contaminated clothing, including footwear. Flush skin and hair with running water (and soap if available). Seek medical attention in event of irritation.
Inhalation	 If fumes or combustion products are inhaled remove from contaminated area. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. Transport to hospital, or doctor, without delay.
Ingestion Ingestion If swallowed do NOT induce vomiting. If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevaspiration.	

Chemwatch: **7962-66** Page **3** of **16**Version No: **2.1**

PNQ Premixed Concrete Wash Out Waste

Initial Date: 01/07/2025 Revision Date: 01/07/2025 Print Date: 02/07/2025

- Observe the patient carefully.
- ▶ Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious.
- Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink.
- Seek medical advice

Indication of any immediate medical attention and special treatment needed

Treat symptomatically.

For acute or short term repeated exposures to iron and its derivatives:

- Always treat symptoms rather than history.
- In general, however, toxic doses exceed 20 mg/kg of ingested material (as elemental iron) with lethal doses exceeding 180 mg/kg.
- Control of iron stores depend on variation in absorption rather than excretion. Absorption occurs through aspiration, ingestion and burned skin.
- Hepatic damage may progress to failure with hypoprothrombinaemia and hypoglycaemia. Hepatorenal syndrome may occur.
- Iron intoxication may also result in decreased cardiac output and increased cardiac pooling which subsequently produces hypotension.
- Serum iron should be analysed in symptomatic patients. Serum iron levels (2-4 hrs post-ingestion) greater that 100 ug/dL indicate poisoning with levels, in excess of 350 ug/dL, being potentially serious. Emesis or lavage (for obtunded patients with no gag reflex) are the usual means of decontamination.
- Activated charcoal does not effectively bind iron.
- Latharsis (using sodium sulfate or magnesium sulfate) may only be used if the patient already has diarrhoea.
- Deferoxamine is a specific chelator of ferric (3+) iron and is currently the antidote of choice. It should be administered parenterally. [Ellenhorn and Barceloux: Medical Toxicology]

For acute or short term repeated exposures to dichromates and chromates:

- Absorption occurs from the alimentary tract and lungs.
- ▶ The kidney excretes about 60% of absorbed chromate within 8 hours of ingestion. Urinary excretion may take up to 14 days.
- Establish airway, breathing and circulation. Assist ventilation.
- Induce emesis with Ipecac Syrup if patient is not convulsing, in coma or obtunded and if the gag reflex is present.
- Otherwise use gastric lavage with endotracheal intubation.
- Fluid balance is critical. Peritoneal dialysis, haemodialysis or exchange transfusion may be effective although available data is limited.
- ▶ British Anti-Lewisite, ascorbic acid, folic acid and EDTA are probably not effective.
- ▶ There are no antidotes
- Primary irritation, including chrome ulceration, may be treated with ointments comprising calcium-sodium-EDTA. This, together with the use of frequently renewed dressings, will ensure rapid healing of any ulcer which may develop.

The mechanism of action involves the reduction of Cr (VI) to Cr(III) and subsequent chelation; the irritant effect of Cr(III)/ protein complexes is thus avoided. [ILO Encyclopedia]

[Ellenhorn and Barceloux: Medical Toxicology]

- Manifestation of aluminium toxicity include hypercalcaemia, anaemia, Vitamin D refractory osteodystrophy and a progressive encephalopathy (mixed dysarthria-apraxia of speech, asterixis, tremulousness, myoclonus, dementia, focal seizures). Bone pain, pathological fractures and proximal myopathy can occur.
- Symptoms usually develop insidiously over months to years (in chronic renal failure patients) unless dietary aluminium loads are excessive.
- Serum aluminium levels above 60 ug/ml indicate increased absorption. Potential toxicity occurs above 100 ug/ml and clinical symptoms are present when levels exceed 200 ug/ml.
- Deferoxamine has been used to treat dialysis encephalopathy and osteomalacia. CaNa2EDTA is less effective in chelating aluminium.

[Ellenhorn and Barceloux: Medical Toxicology]

For acute or short-term repeated exposures to highly alkaline materials:

- Respiratory stress is uncommon but present occasionally because of soft tissue edema.
- Unless endotracheal intubation can be accomplished under direct vision, cricothyroidotomy or tracheotomy may be necessary.
- Oxygen is given as indicated.
- The presence of shock suggests perforation and mandates an intravenous line and fluid administration.
- Damage due to alkaline corrosives occurs by liquefaction necrosis whereby the saponification of fats and solubilisation of proteins allow deep penetration into the tissue.

Alkalis continue to cause damage after exposure.

INGESTION:

Milk and water are the preferred diluents

No more than 2 glasses of water should be given to an adult.

- ▶ Neutralising agents should never be given since exothermic heat reaction may compound injury.
- * Catharsis and emesis are absolutely contra-indicated.
- * Activated charcoal does not absorb alkali.
- * Gastric lavage should not be used.
- Supportive care involves the following:
- Withhold oral feedings initially.
- If endoscopy confirms transmucosal injury start steroids only within the first 48 hours.
- Carefully evaluate the amount of tissue necrosis before assessing the need for surgical intervention.
- Patients should be instructed to seek medical attention whenever they develop difficulty in swallowing (dysphagia).

SKIN AND EYE:

Injury should be irrigated for 20-30 minutes.

Eye injuries require saline. [Ellenhorn & Barceloux: Medical Toxicology]

SECTION 5 Firefighting measures

Extinguishing media

- ▶ There is no restriction on the type of extinguisher which may be used.
- Use extinguishing media suitable for surrounding area.

Special hazards arising from the substrate or mixture

Fire Incompatibility

Fire Fighting

P Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result

Advice for firefighters

- When silica dust is dispersed in air, firefighters should wear inhalation protection as hazardous substances from the fire may be adsorbed on the silica particles.
- ► When heated to extreme temperatures, (>1700 deg.C) amorphous silica can fuse.
- Alert Fire Brigade and tell them location and nature of hazard.
- Wear breathing apparatus plus protective gloves in the event of a fire.
- ▶ Prevent, by any means available, spillage from entering drains or water courses.
- Use fire fighting procedures suitable for surrounding area.
- DO NOT approach containers suspected to be hot.
- Cool fire exposed containers with water spray from a protected location.
- If safe to do so, remove containers from path of fire.
- ▶ Equipment should be thoroughly decontaminated after use.

Chemwatch: **7962-66** Page **4** of **16**

Version No: 2.1

PNQ Premixed Concrete Wash Out Waste

Initial Date: 01/07/2025 Revision Date: 01/07/2025 Print Date: 02/07/2025

Fire/Explosion Hazard	 When silica dust is dispersed in air, firefighters should wear inhalation protection as hazardous substances from the fire may be adsorbed on the silica particles. When heated to extreme temperatures, (>1700 deg.C) amorphous silica can fuse. carbon dioxide (CO2) silicon dioxide (SiO2) metal oxides other pyrolysis products typical of burning organic material. NOTE: Burns with intense heat. Produces melting, flowing, burning liquid and dense acrid black smoke. When aluminium oxide dust is dispersed in air, firefighters should wear protection against inhalation of dust particles, which can also contain hazardous substances from the fire absorbed on the alumina particles. May emit poisonous furnes. May emit corrosive furnes.
HAZCHEM	Not Applicable

SECTION 6 Accidental release measures

Personal precautions, protective equipment and emergency procedures

See section 8

Environmental precautions

See section 12

Methods and material for containment and cleaning up

Methods and material for cont	annient and cleaning up
Minor Spills	 Clean up all spills immediately. Avoid contact with skin and eyes. Wear impervious gloves and safety goggles. Trowel up/scrape up. Place spilled material in clean, dry, sealed container. Flush spill area with water.
Major Spills	 Clear area of personnel and move upwind. Alert Fire Brigade and tell them location and nature of hazard. Wear full body protective clothing with breathing apparatus. Prevent, by all means available, spillage from entering drains or water courses. Consider evacuation (or protect in place). No smoking, naked lights or ignition sources. Increase ventilation. Stop leak if safe to do so. Water spray or fog may be used to disperse / absorb vapour. Contain or absorb spill with sand, earth or vermiculite. Collect recoverable product into labelled containers for recycling. Collect solid residues and seal in labelled drums for disposal. Wash area and prevent runoff into drains. After clean up operations, decontaminate and launder all protective clothing and equipment before storing and re-using. If contamination of drains or waterways occurs, advise emergency services.

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 Handling and storage

Precautions for safe handling	
Safe handling	Product is moisture sensitive; handle under a dry, inert gas. Nitrogen with less than 5 ppm each of moisture and oxygen is recommended Avoid all personal contact, including inhalation. Wear protective clothing when risk of exposure occurs. Use in a well-ventilated area. Prevent concentration in hollows and sumps. DO NOT enter confined spaces until atmosphere has been checked. DO NOT allow material to contact humans, exposed food or food utensils. Avoid contact with incompatible materials. When handling, DO NOT eat, drink or smoke. Keep containers securely sealed when not in use. Avoid physical damage to containers. Always wash hands with soap and water after handling. Work clothes should be laundered separately. Launder contaminated clothing before re-use. Use good occupational work practice. Observe manufacturer's storage and handling recommendations contained within this SDS. Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.
Other information	 Store in original containers. Keep containers securely sealed. Store in a cool, dry, well-ventilated area. Store away from incompatible materials and foodstuff containers. Protect containers against physical damage and check regularly for leaks. Observe manufacturer's storage and handling recommendations contained within this SDS.

Conditions for safe storage, including any incompatibilities

Suitable container	 Polyethylene or polypropylene container. Packing as recommended by manufacturer. Check all containers are clearly labelled and free from leaks.
Storage incompatibility	Avoid strong acids, bases. Avoid reaction with oxidising agents

SECTION 8 Exposure controls / personal protection

PNQ Premixed Concrete Wash Out Waste

Initial Date: 01/07/2025 Revision Date: 01/07/2025

Print Date: 02/07/2025

Control parameters

Occupational Exposure Limits (OEL)

INGREDIENT DATA

Source	Ingredient	Material name	TWA	STEL	Peak	Notes
Australia Exposure Standards	silica crystalline - quartz	Quartz (respirable dust)	0.05 mg/m3	Not Available	Not Available	Not Available
Australia Exposure Standards	silica crystalline - quartz	Silica - Crystalline: Quartz (respirable dust)	0.05 mg/m3	Not Available	Not Available	Not Available
Australia Exposure Standards	portland cement	Portland cement	10 mg/m3	Not Available	Not Available	(a) This value is for inhalable dust containing no asbestos and < 1% crystalline silica.
Australia Exposure Standards	chromium trioxide	Chromium (VI) compounds (as Cr), water soluble	0.05 mg/m3	Not Available	Not Available	Not Available
Australia Exposure Standards	silica gel	Silica - Amorphous: Fume (thermally generated)(respirable dust)	2 mg/m3	Not Available	Not Available	(e) Containing no asbestos and < 1% crystalline silica.
Australia Exposure Standards	silica gel	Silica - Amorphous: Fumed silica (respirable dust)	2 mg/m3	Not Available	Not Available	Not Available
Australia Exposure Standards	silica gel	Fumed silica (respirable dust)	2 mg/m3	Not Available	Not Available	Not Available
Australia Exposure Standards	silica gel	Silica - Amorphous: Silica gel	10 mg/m3	Not Available	Not Available	(a) This value is for inhalable dust containing no asbestos and < 1% crystalline silica.
Australia Exposure Standards	silica gel	Silica - Amorphous: Precipitated silica	10 mg/m3	Not Available	Not Available	(a) This value is for inhalable dust containing no asbestos and < 1% crystalline silica.
Australia Exposure Standards	silica gel	Silica gel	10 mg/m3	Not Available	Not Available	(a) This value is for inhalable dust containing no asbestos and < 1% crystalline silica.
Australia Exposure Standards	silica gel	Precipitated silica	10 mg/m3	Not Available	Not Available	(a) This value is for inhalable dust containing no asbestos and < 1% crystalline silica.

Ingredient	Original IDLH	Revised IDLH
silica crystalline - quartz	25 mg/m3 / 50 mg/m3	Not Available
portland cement	5,000 mg/m3	Not Available
chromium trioxide	15 mg/m3	Not Available
water	Not Available	Not Available
silica gel	3,000 mg/m3	Not Available
polystyrene	Not Available	Not Available

MATERIAL DATA

WARNING: For inhalation exposure ONLY:

This substance has been classified by the ACGIH as A2 Suspected Human Carcinogen.

for calcium silicate:

containing no asbestos and <1% crystalline silica

ES TWA: 10 mg/m3 inspirable dust

TLV TWA: 10 mg/m3 total dust (synthetic nonfibrous) A4

Although in vitro studies indicate that calcium silicate is more toxic than substances described as "nuisance dusts" is thought that adverse health effects which might occur following exposure to 10-20 mg/m3 are likely to be minimal. The TLV-TWA is thought to be protective against the physical risk of eye and upper respiratory tract irritation in workers and to prevent interference with vision and deposition of particulate in the eyes, ears, nose and mouth.

for chrome(VI) containing substances:

Some jurisdictions require that health surveillance be carried on workers occupationally exposed to inorganic chromium. Such surveillance should emphasise

- demography, occupational and medical history and health advice
- physical examination with emphasis on the respiratory system and skin weekly skin inspection of hands and forearms by a "responsible person"

An induction threshold for chromium (VI) allergy is difficult to define, but from experience in the construction industry and among cement workers it is well known that levels of 10-20 mg/kg soluble chromium (VI) in the cement has caused sensitisation with a prevalence of about 4-5% of the exposed population.

Minimum elicitation thresholds (MET10%) which will elicit an allergic response in 10% of already sensitised individuals are found to be in the range of 0.02 to 0.9 ug/cm2/ 2 days in different studies (Annex XV Report - Proposal for a restriction: Chromium (VI) compounds - Jan 2012)

https://echa.europa.eu/documents/10162/4d88d444-4b8b-48ab-9c11-6e74819e047c

WARNING: For inhalation exposure ONLY: This substance has been classified by the IARC as Group 1: CARCINOGENIC TO HUMANS

For amorphous crystalline silica (precipitated silicic acid):

Amorphous crystalline silica shows little potential for producing adverse effects on the lung and exposure standards should reflect a particulate of low intrinsic toxicity. Mixtures of amorphous silicas/ diatomaceous earth and crystalline silica should be monitored as if they comprise only the crystalline forms.

The dusts from precipitated silica and silica gel produce little adverse effect on pulmonary functions and are not known to produce significant disease or toxic effect.

IARC has classified silica, amorphous as Group 3: NOT classifiable as to its carcinogenicity to humans.

Evidence of carcinogenicity may be inadequate or limited in animal testing. NOTE: This substance has been classified by the ACGIH as A4 NOT classifiable as causing Cancer in humans

The International Agency for Research on Cancer (IARC) has classified occupational exposures to respirable (<5 um) crystalline silica as being carcinogenic to humans. This classification is based on what IARC considered sufficient evidence from epidemiological studies of humans for the carcinogenicity of inhaled silica in the forms of guartz and cristobalite. Crystalline silica is also known to cause silicosis, a non-cancerous lung disease. Intermittent exposure produces; focal fibrosis, (pneumoconiosis), cough, dyspnoea, liver tumours.

* Millions of particles per cubic foot (based on impinger samples counted by light field techniques).

NOTE: the physical nature of quartz in the product determines whether it is likely to present a chronic health problem. To be a hazard the material must enter the breathing zone as respirable particles.

For aluminium oxide:

Page 6 of 16

Chemwatch: 7962-66 Version No: 2.1

PNQ Premixed Concrete Wash Out Waste

Initial Date: 01/07/2025 Revision Date: 01/07/2025 Print Date: 02/07/2025

The experimental and clinical data indicate that aluminium oxide acts as an "inert" material when inhaled and seems to have little effect on the lungs nor does it produce significant organic disease or toxic effects when exposures are kept under reasonable control.

[Documentation of the Threshold Limit Values], ACGIH, Sixth Edition

The concentration of dust, for application of respirable dust limits, is to be determined from the fraction that penetrates a separator whose size collection efficiency is described by a cumulative log-normal function with a median aerodynamic diameter of 4.0 um (+-) 0.3 um and with a geometric standard deviation of 1.5 um (+-) 0.1 um, i.e..generally less than 5 um.

Because the margin of safety of the quartz TLV is not known with certainty and given the associated link between silicosis and lung cancer it is recommended that quartz concentrations be maintained as far below the TLV as prudent practices will allow.

Exposure to respirable crystalline silicas (RCS) represents a significant hazard to workers, particularly those employed in the construction industry where respirable dusts of of cement and concrete are common. Cutting, grinding and other high speed processes, involving their finished products, may further result in dusty atmospheres. Bricks are also a potential source of RCSs under such circumstances

It is estimated that half of the occupations, involved in construction work, are exposed to levels of RCSs, higher than the current allowable limits. Beaudry et al: Journal of Occupational and Environmental Hygiene 10: 71-77; 2013

Exposure controls

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are:

Process controls which involve changing the way a job activity or process is done to reduce the risk.

Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure.

Appropriate engineering controls

- Employees exposed to confirmed human carcinogens should be authorized to do so by the employer, and work in a regulated area.
- Work should be undertaken in an isolated system such as a "glove-box". Employees should wash their hands and arms upon completion of the assigned task and before engaging in other activities not associated with the isolated system.
- Within regulated areas, the carcinogen should be stored in sealed containers, or enclosed in a closed system, including piping systems, with any sample ports or openings closed while the carcinogens are contained within.
- Open-vessel systems are prohibited.
- ▶ Each operation should be provided with continuous local exhaust ventilation so that air movement is always from ordinary work areas to the operation.
- Exhaust air should not be discharged to regulated areas, non-regulated areas or the external environment unless decontaminated Clean make-up air should be introduced in sufficient volume to maintain correct operation of the local exhaust system
- For maintenance and decontamination activities, authorized employees entering the area should be provided with and required to wear clean, impervious garments, including gloves, boots and continuous-air supplied hood. Prior to removing protective garments the employee should undergo decontamination and be required to shower upon removal of the garments and hood.
- Except for outdoor systems, regulated areas should be maintained under negative pressure (with respect to non-regulated areas).
- Local exhaust ventilation requires make-up air be supplied in equal volumes to replaced air.
- Laboratory hoods must be designed and maintained so as to draw air inward at an average linear face velocity of 0.76 m/sec with a minimum of 0.64 m/sec. Design and construction of the fume hood requires that insertion of any portion of the employees body, other than hands and arms, be disallowed.

Individual protection measures, such as personal protective equipment

Eye and face protection

Safety glasses with side shields

- Chemical goggles. [AS/NZS 1337.1, EN166 or national equivalent]
- Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59].

Skin protection

See Hand protection below

- Wear chemical protective gloves, e.g. PVC.
- Wear safety footwear or safety gumboots, e.g. Rubber NOTE:

Hands/feet protection

- The material may produce skin sensitisation in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact. Contaminated leather items, such as shoes, belts and watch-bands should be removed and destroyed.

Body protection

- Employees working with confirmed human carcinogens should be provided with, and be required to wear, clean, full body protective clothing (smocks, coveralls, or long-sleeved shirt and pants), shoe covers and gloves prior to entering the regulated area. [AS/NZS ISO 6529:2006 or national equivalent]
- Employees engaged in handling operations involving carcinogens should be provided with, and required to wear and use half-face filtertype respirators with filters for dusts, mists and fumes, or air purifying canisters or cartridges. A respirator affording higher levels of protection may be substituted. [AS/NZS 1715 or national equivalent]
- Figure 2 Emergency deluge showers and eyewash fountains, supplied with potable water, should be located near, within sight of, and on the same level with locations where direct exposure is likely.

Other protection

- Prior to each exit from an area containing confirmed human carcinogens, employees should be required to remove and leave protective clothing and equipment at the point of exit and at the last exit of the day, to place used clothing and equipment in impervious containers at the point of exit for purposes of decontamination or disposal. The contents of such impervious containers must be identified with
- required to wear clean, impervious garments, including gloves, boots and continuous-air supplied hood. Prior to removing protective garments the employee should undergo decontamination and be required to shower upon removal of the garments and hood.

suitable labels. For maintenance and decontamination activities, authorized employees entering the area should be provided with and

- Overalls.
- P.V.C apron.
- Barrier cream.
- Skin cleansing cream.
- Eye wash unit.

Recommended material(s) GLOVE SELECTION INDEX

Chemwatch: **7962-66**Version No: **2.1**

PNQ Premixed Concrete Wash Out Waste

Initial Date: 01/07/2025 Revision Date: 01/07/2025

Print Date: 02/07/2025

Glove selection is based on a modified presentation of the:

"Forsberg Clothing Performance Index".

The effect(s) of the following substance(s) are taken into account in the *computer-generated* selection:

PNQ Premixed Concrete Wash Out Waste

Material	СРІ
BUTYL	A
NATURAL RUBBER	С
NEOPRENE	С
NITRILE	С
NITRILE+PVC	С
PVA	С
PVC	С
VITON	С

- * CPI Chemwatch Performance Index
- A: Best Selection
- B: Satisfactory; may degrade after 4 hours continuous immersion
- C: Poor to Dangerous Choice for other than short term immersion

NOTE: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. -

* Where the glove is to be used on a short term, casual or infrequent basis, factors such as "feel" or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted.

Ansell Glove Selection

Glove — In order of recommendation
AlphaTec 02-100
AlphaTec® Solvex® 37-185
AlphaTec® 38-612
AlphaTec® 58-008
AlphaTec® 58-530B
AlphaTec® 58-530W
AlphaTec® 58-735
AlphaTec® 79-700
AlphaTec® Solvex® 37-675
DermaShield™ 73-711

The suggested gloves for use should be confirmed with the glove supplier.

Use respirators with protection factors appropriate for the exposure level.

- Up to 5 X TLV, use valveless mask type; up to 10 X TLV, use 1/2 mask dust respirator
- Up to 50 X TLV, use full face dust respirator or demand type C air supplied respirator
- Up to 500 X TLV, use powered air-purifying dust respirator or a Type C pressure demand supplied-air respirator
- Over 500 X TLV wear full-face self-contained breathing apparatus with positive pressure mode or a combination respirator with a Type C positive pressure supplied-air full-face respirator and an auxiliary self-contained breathing apparatus operated in pressure demand or other positive pressure mode
- Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content.
- The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate.
- Cartridge performance is affected by humidity. Cartridges should be changed after 2 hr of continuous use unless it is determined that the humidity is less than 75%, in which case, cartridges can be used for 4 hr. Used cartridges should be discarded daily, regardless of the length of time used
- · Respirators may be necessary when engineering and administrative controls do not adequately prevent exposures.
- The decision to use respiratory protection should be based on professional judgment that takes into account toxicity information, exposure measurement data, and frequency and likelihood of the worker's exposure ensure users are not subject to high thermal loads which may result in heat stress or distress due to personal protective equipment (powered, positive flow, full face apparatus may be an option).
- Published occupational exposure limits, where they exist, will assist in determining the adequacy of the selected respiratory protection. These may be government mandated or vendor recommended.
- Certified respirators will be useful for protecting workers from inhalation of particulates when properly selected and fit tested as part of a complete respiratory protection program.
- · Where protection from nuisance levels of dusts are desired, use type N95 (US) or type P1 (EN143) dust masks. Use respirators and components tested and approved under appropriate government standards such as NIOSH (US) or CEN (EU)
- · Use approved positive flow mask if significant quantities of dust becomes airborne.
- · Try to avoid creating dust conditions.

Where significant concentrations of the material are likely to enter the breathing zone, a Class P3 respirator may be required.

Class P3 particulate filters are used for protection against highly toxic or highly irritant particulates.

Filtration rate: Filters at least 99.95% of airborne particles

Suitable for:

- · Relatively small particles generated by mechanical processes eg. grinding, cutting, sanding, drilling, sawing.
- \cdot Sub-micron thermally generated particles e.g. welding fumes, fertilizer and bushfire smoke.
- \cdot Biologically active airborne particles under specified infection control applications e.g. viruses, bacteria, COVID-19, SARS
- · Highly toxic particles e.g. Organophosphate Insecticides, Radionuclides, Asbestos Note: P3 Rating can only be achieved when used with a Full Face Respirator or Powered Air-Purifying Respirator (PAPR). If used with any other respirator, it will only provide filtration protection up to a P2 rating.

SECTION 9 Physical and chemical properties

Information on basic physical and chemical properties

	<u> </u>			
Appearance	A moldable generally grey mixture. Colour may vary from	A moldable generally grey mixture. Colour may vary from near white to any other colour.		
Physical state	Non Slump Paste	Relative density (Water = 1)	2.4-2.5	
Odour	Ammonia - like	Partition coefficient n-octanol / water	Not Available	
Odour threshold	Not Available	Auto-ignition temperature (°C)	Not Applicable	
pH (as supplied)	>7	Decomposition temperature (°C)	Not Available	
Melting point / freezing point (°C)	>1200	Viscosity (cSt)	Not Available	
Initial boiling point and boiling range (°C)	Not Available	Molecular weight (g/mol)	Not Applicable	
Flash point (°C)	Not Applicable	Taste	Not Available	
Evaporation rate	Not Available	Explosive properties	Not Available	
Flammability	Not Applicable	Oxidising properties	Not Available	
Upper Explosive Limit (%)	Not Available	Surface Tension (dyn/cm or mN/m)	Not Available	
Lower Explosive Limit (%)	Not Available	Volatile Component (%vol)	Not Available	
Vapour pressure (kPa)	Not Available	Gas group	Not Available	
Solubility in water	Reacts	pH as a solution (1%)	Not Available	
Vapour density (Air = 1)	Not Available	VOC g/L	Not Available	
Heat of Combustion (kJ/g)	Not Available	Ignition Distance (cm)	Not Available	

Page 8 of 16

PNQ Premixed Concrete Wash Out Waste

Initial Date: 01/07/2025 Revision Date: 01/07/2025 Print Date: 02/07/2025

Flame Height (cm)	Not Available	Flame Duration (s)	Not Available
Enclosed Space Ignition Time Equivalent (s/m3)	Not Available	Enclosed Space Ignition Deflagration Density (g/m3)	Not Available

SECTION 10 Stability and reactivity

Reactivity	ee section 7	
Chemical stability	Product is considered stable and hazardous polymerisation will not occur.	
Possibility of hazardous reactions	See section 7	
Conditions to avoid	See section 7	
Incompatible materials	See section 7	
Hazardous decomposition products	See section 5	

SECTION 11 Toxicological information

Information on toxicological effects

a) Acute Toxicity	Based on available data, the classification criteria are not met.	
b) Skin Irritation/Corrosion	There is sufficient evidence to classify this material as skin corrosive or irritating.	
c) Serious Eye Damage/Irritation	There is sufficient evidence to classify this material as eye damaging or irritating	
d) Respiratory or Skin sensitisation	There is sufficient evidence to classify this material as sensitising to skin or the respiratory system	
e) Mutagenicity	There is sufficient evidence to classify this material as mutagenic	
f) Carcinogenicity	Based on available data, the classification criteria are not met.	
g) Reproductivity	Based on available data, the classification criteria are not met.	
h) STOT - Single Exposure	There is sufficient evidence to classify this material as toxic to specific organs through single exposure	
i) STOT - Repeated Exposure	There is sufficient evidence to classify this material as toxic to specific organs through repeated exposure	
j) Aspiration Hazard	Based on available data, the classification criteria are not met.	

Evidence shows, or practical experience predicts, that the material produces irritation of the respiratory system, in a substantial number of individuals, following inhalation. In contrast to most organs, the lung is able to respond to a chemical insult by first removing or neutralising the irritant and then repairing the damage. The repair process, which initially evolved to protect mammalian lungs from foreign matter and antigens, may however, produce further lung damage resulting in the impairment of gas exchange, the primary function of the lungs Respiratory tract irritation often results in an inflammatory response involving the recruitment and activation of many cell types, mainly derived from the vascular system.

Inhalation of vapours or aerosols (mists, fumes), generated by the material during the course of normal handling, may be damaging to the health of the individual

Inhalation may result in chrome ulcers or sores of nasal mucosa and lung damage.

Polystyrene is virtually non-toxic if inhaled. High concentrations of dust may cause temporary irritation and coughing. Fine particles deposited in the lungs do not cause irreversible lung damage. Excessive exposure may result in irritation, coughing and difficult breathing. These effects normally clear up soon after exposure ceases

Dust from sawing and sanding seldom reach further than the bronchi. Fumes from hot wire cutting the material may irritate nose and eyes Effects on lungs are significantly enhanced in the presence of respirable particles. Overexposure to respirable dust may produce wheezing, coughing and breathing difficulties leading to or symptomatic of impaired respiratory function.

Acute silicosis occurs under conditions of extremely high silica dust exposure particularly when the particle size of the dust is small. It differs greatly from classical silicosis both clinically and pathologically. The disease is rapidly progressive with diffuse pulmonary involvement developing only months after the initial exposure and causing deaths within 1 to 2 years. It is often complicated by an associated tuberculosis. The lungs of victims contain no classical silicotic nodules or only a few, microscopic abortive nodules, whereas the air spaces are diffusively filled and distended with silica-containing, lipoprotein paste in which degenerating and necrotic macrophages are sometimes discernible - the condition is sometimes described as alveolar lipoproteinosis. The uptake of silica particles by macrophages and lysosymal incorporation, is followed by rupture of the lysosomal membrane and release of lysosomal enzymes into cytoplasm of the macrophage. This causes the macrophage to be digested by its own enzymes and after lysis the free silica is released to be ingested by other macrophages thus continuing initiate collagen formation in the lung tissue producing the characteristic nodule found in classical (chronic) silicosis.

Ingestion

Inhaled

Accidental ingestion of the material may be damaging to the health of the individual

Chromate salts are corrosive because of their oxidising potency and produce tissue injury similar to acid burns. Ingestion may produce violent gastroenteritis, severe circulatory collapse and toxic nephritis. Peripheral vascular shock may also ensue.

Evidence exists, or practical experience predicts, that the material either produces inflammation of the skin in a substantial number of individuals following direct contact, and/or produces significant inflammation when applied to the healthy intact skin of animals, for up to four hours, such inflammation being present twenty-four hours or more after the end of the exposure period. Skin irritation may also be present after prolonged or repeated exposure; this may result in a form of contact dermatitis (nonallergic). The dermatitis is often characterised by

skin redness (erythema) and swelling (oedema) which may progress to blistering (vesiculation), scaling and thickening of the epidermis. At epidermis

the microscopic level there may be intercellular oedema of the spongy layer of the skin (spongiosis) and intracellular oedema of the The material may accentuate any pre-existing dermatitis condition Skin contact is not thought to have harmful health effects (as classified under EC Directives); the material may still produce health damage

Skin Contact

following entry through wounds, lesions or abrasions Contact with aluminas (aluminium oxides) may produce a form of irritant dermatitis accompanied by pruritus.

Though considered non-harmful, slight irritation may result from contact because of the abrasive nature of the aluminium oxide particles. Four students received severe hand burns whilst making moulds of their hands with dental plaster substituted for Plaster of Paris. The dental plaster known as "Stone" was a special form of calcium sulfate hemihydrate containing alpha-hemihydrate crystals that provide high compression strength to the moulds. Beta-hemihydrate (normal Plaster of Paris) does not cause skin burns in similar circumstances Skin contact may result in severe irritation particularly to broken skin. Ulceration known as "chrome ulcers" may develop. Chrome ulcers and skin cancer are significantly related.

Open cuts, abraded or irritated skin should not be exposed to this material

Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

Chemwatch: 7962-66 Page 9 of 16

Version No: 2.1

Initial Date: 01/07/2025 Revision Date: 01/07/2025 **PNQ Premixed Concrete Wash Out Waste**

Print Date: 02/07/2025

Eve

When applied to the eye(s) of animals, the material produces severe ocular lesions which are present twenty-four hours or more after

Chronic

Long-term exposure to respiratory irritants may result in disease of the airways involving difficult breathing and related systemic problems. Strong evidence exists that the substance may cause irreversible but non-lethal mutagenic effects following a single exposure. Practical experience shows that skin contact with the material is capable either of inducing a sensitisation reaction in a substantial number of individuals, and/or of producing a positive response in experimental animals.

Substances that can cause occupational asthma (also known as asthmagens and respiratory sensitisers) can induce a state of specific airway hyper-responsiveness via an immunological, irritant or other mechanism. Once the airways have become hyper-responsive, further exposure to the substance, sometimes even to tiny quantities, may cause respiratory symptoms. These symptoms can range in severity from a runny nose to asthma. Not all workers who are exposed to a sensitiser will become hyper-responsive and it is impossible to identify in advance who are likely to become hyper-responsive.

Substances than can cuase occupational asthma should be distinguished from substances which may trigger the symptoms of asthma in people with pre-existing air-way hyper-responsiveness. The latter substances are not classified as asthmagens or respiratory sensitisers Wherever it is reasonably practicable, exposure to substances that can cuase occupational asthma should be prevented. Where this is not possible the primary aim is to apply adequate standards of control to prevent workers from becoming hyper-responsive.

Activities giving rise to short-term peak concentrations should receive particular attention when risk management is being considered. Health surveillance is appropriate for all employees exposed or liable to be exposed to a substance which may cause occupational asthma and there should be appropriate consultation with an occupational health professional over the degree of risk and level of surveillance. On the basis of epidemiological data, the material is regarded as carcinogenic to humans. There is sufficient data to establish a causal association between human exposure to the material and the development of cancer.

Toxic: danger of serious damage to health by prolonged exposure through inhalation, in contact with skin and if swallowed. Serious damage (clear functional disturbance or morphological change which may have toxicological significance) is likely to be caused by repeated or prolonged exposure. As a rule the material produces, or contains a substance which produces severe lesions. Such damage may become apparent following direct application in subchronic (90 day) toxicity studies or following sub-acute (28 day) or chronic (two-year) toxicity tests.

Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems

The synthetic, amorphous silicas are believed to represent a very greatly reduced silicosis hazard compared to crystalline silicas and are considered to be nuisance dusts

When heated to high temperature and a long time, amorphous silica can produce crystalline silica on cooling. Inhalation of dusts containing crystalline silicas may lead to silicosis, a disabling pulmonary fibrosis that may take years to develop. Discrepancies between various studies showing that fibrosis associated with chronic exposure to amorphous silica and those that do not may be explained by assuming that diatomaceous earth (a non-synthetic silica commonly used in industry) is either weakly fibrogenic or nonfibrogenic and that fibrosis is due to contamination by crystalline silica content

Workers exposed to polystyrene converting processes show disorders of the liver, blood, nervous system and mucous membranes of the upper respiratory tract. A disturbed menstrual cycle, morphological changes in the placenta and complications arising during pregnancy and childbirth have also been recorded in polystyrene production workers.

Cement contact dermatitis (CCD) may occur when contact shows an allergic response, which may progress to sensitisation. Sensitisation is due to soluble chromates (chromate compounds) present in trace amounts in some cements and cement products. Soluble chromates readily penetrate intact skin. Cement dermatitis can be characterised by fissures, eczematous rash, dystrophic nails, and dry skin; acute contact with highly alkaline mixtures may cause localised necrosis.

Cement eczema may be due to chromium in feed stocks or contamination from materials of construction used in processing the cement. Sensitisation to chromium may be the leading cause of nickel and cobalt sensitivity and the high alkalinity of cement is an important factor in cement dermatoses [ILO].

Repeated, prolonged severe inhalation exposure may cause pulmonary oedema and rarely, pulmonary fibrosis. Workers may also suffer from dust-induced bronchitis with chronic bronchitis reported in 17% of a group occupationally exposed to high dust levels Respiratory symptoms and ventilatory function were studied in a group of 591 male Portland cement workers employed in four Taiwanese cement plants, with at least 5 years of exposure (1). This group had a significantly lowered mean forced vital capacity (FCV), forced expiratory volume at 1 s (FEV1) and forced expiratory flows after exhalation of 50% and 75% of the vital capacity (FEF50, FEF75). The data suggests that occupational exposure to Portland cement dust may lead to a higher incidence of chronic respiratory symptoms and a reduction of ventilatory capacity.

Chun-Yuh et al; Journal of Toxicology and Environmental Health 49: 581-588, 1996

Chronic symptoms produced by crystalline silicas included decreased vital lung capacity and chest infections. Lengthy exposure may cause silicosis a disabling form of pneumoconiosis which may lead to fibrosis, a scarring of the lining of the air sacs in the lung.

The form and severity in which silicosis manifests itself depends in part on the type and extent of exposure to silica dusts: chronic, accelerated and acute forms are all recognized. In later stages the critical condition may become disabling and potentially fatal. Restrictive and/or obstructive lung function changes may result from chronic exposure. A risk associated with silicosis is development of pulmonary tuberculosis (silico-tuberculosis). Respiratory insufficiencies due to massive fibrosis and reduced pulmonary function, possibly with accompanying heart failure, are other potential causes of death due to silicosis.

Not all individuals with silicosis will exhibit symptoms (signs) of the disease. However, silicosis can be progressive, and symptoms may potentially appear years after exposures have ceased. Symptoms of silicosis may include (but are

not limited to): Shortness of breath; difficulty breathing with or without exertion; coughing; diminished work capacity; diminished chest expansion; reduction of lung volume; heart enlargement and/or failure.

Respirable dust containing newly broken particles has been shown to be more hazardous to animals in laboratory tests than respirable dust containing older silica particles of similar size. Respirable silica particles which had aged for sixty days or more showed less lung injury in animals than equal exposures of respirable dust containing newly broken pieces of silica. There are reports in the literature indicating that crystalline silica exposure may be associated with adverse health effects involving the kidney, scleroderma (thickening of the skin caused by swelling and thickening of fibrous tissue) and other autoimmune and immunity-related disorders. Several studies of persons with silicosis or silica exposure also indicate or suggest increased risk of developing lung cancer, a risk that may increase with the duration of exposure. Many of these studies of silicosis do not account for lung cancer confounders, especially smoking.

Symptoms may appear 8 to 18 months after initial exposure. Smoking increases this risk. Classic silicosis is a chronic disease characterised by the formation of scattered, rounded or stellate silica-containing nodules of scar tissue in the lungs ranging from microscopic to 1.0 cm or more. The nodules isolate the inhaled silica particles and protect the surrounding normal and functioning tissue from continuing injury. Simple silicosis (in which the nodules are less than 1.0 cm in diameter) is generally asymptomatic but may be slowly progressive even in the absence of continuing exposure. Simple silicosis can develop in complicated silicoses (in which nodules are greater than 1.0 cm in diameter) and can produce disabilities including an associated tuberculous infection (which 50 years ago accounted for 75% of the deaths among silicotic workers). Crystalline silica deposited in the lungs causes epithelial and macrophage injury and activation. Crystalline silica translocates to the interstitium and the regional lymph nodes and cause the recruitment of inflammatory cells in a dose dependent manner. In humans, a large fraction of crystalline silica persists in the lungs. The question of potential carcinogenicity associated with chronic inhalation of crystalline silica remains equivocal with some studies supporting the proposition and others finding no significant association. The results of recent epidemiological studies suggest that lung cancer risk is elevated only in those patients with overt silicosis. A relatively large number of epidemiological studies have been undertaken and in some, increased risk gradients have been observed in relation to dose surrogates - cumulative exposure, duration of exposure, the presence of radiographically defined silicosis, and peak intensity exposure. Chronic inhalation in rats by single or repeated intratracheal instillation produced a significant increase in the incidences of adenocarcinomas and squamous cell carcinomas of the lung. Lifetime inhalation of crystalline silica (87% alpha-quartz) at 1 mg/m3 (74% respirable) by rats, produced an increase in animals with keratinising cystic squamous cell tumours, adenomas, adenocarcinomas, adenosquamous cell carcinomas, squamous cell carcinoma and nodular bronchiolar alveolar hyperplasia accompanied by extensive subpleural and peribronchiolar fibrosis, increased pulmonary collagen content, focal lipoproteinosis and macrophage infiltration. Thoracic and abdominal malignant lymphomas developed in rats after single intrapleural and intraperitoneal injection of suspensions of several types of quartz. Some studies show excess numbers of cases of schleroderma, connective tissue disorders, lupus, rheumatoid arthritis chronic kidney diseases, and end-stage kidney disease in workers

NOTE: Some jurisdictions require health surveillance be conducted on workers occupationally exposed to silica, crystalline. Such surveillance should emphasise

Chemwatch: **7962-66** Page **10** of **16**

Version No: 2.1

PNQ Premixed Concrete Wash Out Waste

Initial Date: 01/07/2025 Revision Date: 01/07/2025

Print Date: 02/07/2025

demography, occupational and medical history and health advice

standardised respiratory function tests such as FEV1, FVC and FEV1/FVC

- standardised respiratory function tests such as FV1, FVC and FEV1/FVC
- chest X-ray, full size PA view
 - · records of personal exposure

Repeated exposure to synthetic amorphous silicas may produce skin dryness and cracking. Available data confirm the absence of significant toxicity by oral and dermal routes of exposure.

Numerous repeated-dose, subchronic and chronic inhalation toxicity studies have been conducted in a number of species, at airborne concentrations ranging from 0.5 mg/m3 to 150 mg/m3. Lowest-observed adverse effect levels (LOAELs) were typically in the range of 1 to 50 mg/m3. When available, the no-observed adverse effect levels (NOAELs) were between 0.5 and 10 mg/m3. Differences in values may be due to particle size, and therefore the number of particles administered per unit dose. Generally, as particle size diminishes so does the NOAEL/ LOAEL. Exposure produced transient increases in lung inflammation, markers of cell injury and lung collagen content. There was no evidence of interstitial pulmonary fibrosis.

Overexposure to the breathable dust may cause coughing, wheezing, difficulty in breathing and impaired lung function. Chronic symptoms may include decreased vital lung capacity and chest infections. Repeated exposures in the workplace to high levels of fine-divided dusts may produce a condition known as pneumoconiosis, which is the lodgement of any inhaled dusts in the lung, irrespective of the effect. This is particularly true when a significant number of particles less than 0.5 microns (1/50000 inch) are present. Lung shadows are seen in the X-ray. Symptoms of pneumoconiosis may include a progressive dry cough, shortness of breath on exertion, increased chest expansion, weakness and weight loss. As the disease progresses, the cough produces stringy phlegm, vital capacity decreases further, and shortness of breath becomes more severe. Other signs or symptoms include changed breath sounds, reduced oxygen uptake during exercise, emphysema and rarely, pneumothorax (air in the lung cavity).

Removing workers from the possibility of further exposure to dust generally stops the progress of lung abnormalities. When there is high potential for worker exposure, examinations at regular period with emphasis on lung function should be performed. Inhaling dust over an extended number of years may cause pneumoconiosis, which is the accumulation of dusts in the lungs and the subsequent tissue reaction. This may or may not be reversible.

PNQ Premixed Concrete Wash Out Waste	TOXICITY	IRRITATION
	Not Available	Not Available
	TOXICITY	IRRITATION
silica crystalline - quartz	Oral (Rat) LD50: 500 mg/kg ^[2]	Not Available
	TOXICITY	IRRITATION
portland cement	Not Available	Not Available
	TOXICITY	IRRITATION
	Dermal (rabbit) LD50: 57 mg/kg ^[1]	Eye: adverse effect observed (irreversible damage) ^[1]
chromium trioxide	Inhalation (Rat) LC50: 0.083 mg/L4h ^[1]	Skin: adverse effect observed (corrosive) ^[1]
	Oral (Rat) LD50: 52 mg/kg ^[1]	Skin: adverse effect observed (irritating) ^[1]
	TOXICITY	IRRITATION
water	Oral (Rat) LD50: >90000 mg/kg ^[2]	Not Available
	TOXICITY	IRRITATION
	dermal (rat) LD50: >2000 mg/kg ^[1]	Eye (Rodent - rabbit): 25mg/24H - Mild
silica gel	Inhalation (Rat) LC50: >0.09<0.84 mg/l4h ^[1]	Eye (Rodent - rabbit): 8300ug/48H
	Oral (Rat) LD50: >1000 mg/kg ^[1]	Eye: no adverse effect observed (not irritating) ^[1]
	Oral (Rat) LD50: >4500 mg/kg ^[2]	Skin: no adverse effect observed (not irritating) ^[1]
polystyrene	TOXICITY	IRRITATION
	Not Available	Not Available

Legend

non-cancerous lung disease.

 Value obtained from Europe ECHA Registered Substances - Acute toxicity 2. Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances

PNQ Premixed Concrete Wash Out Waste

Laboratory (in vitro) and animal studies show, exposure to the material may result in a possible risk of irreversible effects, with the possibility of producing mutation.

WARNING: For inhalation exposure ONLY: This substance has been classified by the IARC as Group 1: CARCINOGENIC TO HUMANS

SILICA CRYSTALLINE -

The International Agency for Research on Cancer (IARC) has classified occupational exposures to **respirable** (<5 um) crystalline silica as being carcinogenic to humans. This classification is based on what IARC considered sufficient evidence from epidemiological studies of humans for the carcinogenicity of inhaled silica in the forms of quartz and cristobalite. Crystalline silica is also known to cause silicosis, a

 $In term it tent \ exposure \ produces; focal \ fibrosis, \ (pneumoconiosis), \ cough, \ dyspnoea, \ liver \ tumours.$

* Millions of particles per cubic foot (based on impinger samples counted by light field techniques).

NOTE: the physical nature of quartz in the product determines whether it is likely to present a chronic health problem. To be a hazard the material must enter the breathing zone as respirable particles.

CHROMIUM TRIOXIDE

Allergic reactions which develop in the respiratory passages as bronchial asthma or rhinoconjunctivitis, are mostly the result of reactions of the allergen with specific antibodies of the IgE class and belong in their reaction rates to the manifestation of the immediate type. In addition to the allergen-specific potential for causing respiratory sensitisation, the amount of the allergen, the exposure period and the genetically determined disposition of the exposed person are likely to be decisive. Factors which increase the sensitivity of the mucosa may play a role in predisposing a person to allergy. They may be genetically determined or acquired, for example, during infections or exposure to irritant substances. Immunologically the low molecular weight substances become complete allergens in the organism either by binding to peptides or proteins (haptens) or after metabolism (prohaptens).

Particular attention is drawn to so-called atopic diathesis which is characterised by an increased susceptibility to allergic rhinitis, allergic bronchial asthma and atopic eczema (neurodermatitis) which is associated with increased IgE synthesis.

Chemwatch: 7962-66 Page 11 of 16

PNQ Premixed Concrete Wash Out Waste

Initial Date: 01/07/2025 Revision Date: 01/07/2025

Print Date: 02/07/2025

Exogenous allergic alveolitis is induced essentially by allergen specific immune-complexes of the IgG type; cell-mediated reactions (T lymphocytes) may be involved. Such allergy is of the delayed type with onset up to four hours following exposure. **POLYSTYRENE** No data of toxicological significance identified in literature search.

Version No: 2.1

PNQ Premixed Concrete Wash Out Waste & PORTLAND CEMENT & CHROMIUM TRIOXIDE

The following information refers to contact allergens as a group and may not be specific to this product. Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's oedema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria, involve antibody-mediated immune reactions. The significance of the contact allergen is not simply determined by its sensitisation potential: the distribution of the substance and the opportunities for contact with it are equally important. A weakly sensitising substance which is widely distributed can be a more important allergen than one with stronger sensitising potential with which few individuals come into contact. From a clinical point of view, substances are noteworthy if they produce an allergic test reaction in more than 1% of the persons tested.

Asthma-like symptoms may continue for months or even years after exposure to the material ends. This may be due to a non-allergic condition known as reactive airways dysfunction syndrome (RADS) which can occur after exposure to high levels of highly irritating compound. Main criteria for diagnosing RADS include the absence of previous airways disease in a non-atopic individual, with sudden onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. Other criteria for diagnosis of RADS include a reversible airflow pattern on lung function tests, moderate to severe bronchial hyperreactivity on methacholine challenge testing, and the lack of minimal lymphocytic inflammation, without eosinophilia. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. On the other hand, industrial bronchitis is a disorder that occurs as a result of exposure due to high concentrations of irritating substance (often particles) and is completely reversible after exposure ceases. The disorder is characterized by difficulty breathing, cough and mucus production.

Derived No Adverse Effects Level (NOAEL) in the range of 1000 mg/kg/d.

In humans, synthetic amorphous silica (SAS) is essentially non-toxic by mouth, skin or eyes, and by inhalation. Epidemiology studies show little evidence of adverse health effects due to SAS. Repeated exposure (without personal protection) may cause mechanical irritation of the eve and drving/cracking of the skin.

When experimental animals inhale synthetic amorphous silica (SAS) dust, it dissolves in the lung fluid and is rapidly eliminated. If swallowed, the vast majority of SAS is excreted in the faeces and there is little accumulation in the body. Following absorption across the gut, SAS is eliminated via urine without modification in animals and humans. SAS is not expected to be broken down (metabolised) in mammals. After ingestion, there is limited accumulation of SAS in body tissues and rapid elimination occurs. Intestinal absorption has not been calculated, but appears to be insignificant in animals and humans. SASs injected subcutaneously are subjected to rapid dissolution and removal. There is no indication of metabolism of SAS in animals or humans based on chemical structure and available data. In contrast to crystalline silica, SAS is soluble in physiological media and the soluble chemical species that are formed are eliminated via the urinary tract without modification.

PNQ Premixed Concrete Wash Out Waste & SILICA GEL

Both the mammalian and environmental toxicology of SASs are significantly influenced by the physical and chemical properties, particularly those of solubility and particle size. SAS has no acute intrinsic toxicity by inhalation. Adverse effects, including suffocation, that have been reported were caused by the presence of high numbers of respirable particles generated to meet the required test atmosphere. These results are not representative of exposure to commercial SASs and should not be used for human risk assessment. Though repeated exposure of the skin may cause dryness and cracking, SAS is not a skin or eye irritant, and it is not a sensitiser.

Repeated-dose and chronic toxicity studies confirm the absence of toxicity when SAS is swallowed or upon skin contact. Long-term inhalation of SAS caused some adverse effects in animals (increases in lung inflammation, cell injury and lung collagen content), all of which subsided after exposure.

Numerous repeated-dose, subchronic and chronic inhalation toxicity studies have been conducted with SAS in a number of species, at airborne concentrations ranging from 0.5 mg/m3 to 150 mg/m3. Lowest-observed adverse effect levels (LOAELs) were typically in the range of 1 to 50 mg/m3. When available, the no-observed adverse effect levels (NOAELs) were between 0.5 and 10 mg/m3. The difference in values may be explained by different particle size, and therefore the number of particles administered per unit dose. In general, as particle size decreases so does the NOAEL/LOAEL.

Neither inhalation nor oral administration caused neoplasms (tumours). SAS is not mutagenic in vitro. No genotoxicity was detected in in vivo assays. SAS does not impair development of the foetus. Fertility was not specifically studied, but the reproductive organs in long-term studies were not affected.

For Synthetic Amorphous Silica (SAS)

Repeated dose toxicity

Oral (rat), 2 weeks to 6 months, no significant treatment-related adverse effects at doses of up to 8% silica in the diet.

Inhalation (rat), 13 weeks, Lowest Observed Effect Level (LOEL) = 1.3 mg/m3 based on mild reversible effects in the lungs. Inhalation (rat), 90 days, LOEL = 1 mg/m3 based on reversible effects in the lungs and effects in the nasal cavity. For silane treated synthetic amorphous silica:

Repeated dose toxicity: oral (rat), 28-d, diet, no significant treatment-related adverse effects at the doses tested.

There is no evidence of cancer or other long-term respiratory health effects (for example, silicosis) in workers employed in the manufacture of SAS. Respiratory symptoms in SAS workers have been shown to correlate with smoking but not with SAS exposure, while serial pulmonary function values and chest radiographs are not adversely affected by long-term exposure to SAS.

PNQ Premixed Concrete Wash Out Waste & **PORTLAND CEMENT &** WATER

No significant acute toxicological data identified in literature search.

PNQ Premixed Concrete Wash Out Waste & **CHROMIUM TRIOXIDE**

WARNING: This substance has been classified by the IARC as Group 1: CARCINOGENIC TO HUMANS.

Acute Toxicity	×	Carcinogenicity	×
Skin Irritation/Corrosion	✓	Reproductivity	×
Serious Eye Damage/Irritation	~	STOT - Single Exposure	*
Respiratory or Skin sensitisation	~	STOT - Repeated Exposure	~
Mutagenicity	✓	Aspiration Hazard	×

Legend:

Data either not available or does not fill the criteria for classification

Data available to make classification

SECTION 12 Ecological information

Toxicity

DNO Described Company	Endpoint	Test Duration (hr)	Species	Value	Source
PNQ Premixed Concrete Wash Out Waste	Not Available	Not Available	Not Available	Not Available	Not Available
silica crystalline - quartz	Endpoint	Test Duration (hr)	Species	Value	Source

Chemwatch: **7962-66**Version No: **2.1**

PNQ Premixed Concrete Wash Out Waste

Initial Date: 01/07/2025 Revision Date: 01/07/2025 Print Date: 02/07/2025

	Not Available	Not Available	Not Available	Not Available	Not Available
	Endpoint	Test Duration (hr)	Species	Value	Source
portland cement	Not Available	Not Available	Not Available	Not Available	Not Available
	Endpoint	Test Duration (hr)	Species	Value	Source
	BCF	1008h	Fish	4.6-15	7
	EC50	72h	Algae or other aquatic plants	0.38mg/l	2
chromium trioxide	EC50	96h	Algae or other aquatic plants	0.71mg/L	4
	NOEC(ECx)	72h	Crustacea	0.005mg/L	4
	LC50	96h	Fish	13mg/l	2
	Endpoint	Test Duration (hr)	Species	Value	Source
water	Not Available	Not Available	Not Available	Not Available	Not Available
	Endpoint	Test Duration (hr)	Species	Value	Source
	EC50	48h	Crustacea	>86mg/l	2
	EC0(ECx)	24h	Crustacea	>=10000mg/l	1
silica gel	EC50	72h	Algae or other aquatic plants	14.1mg/l	2
	EC50	96h	Algae or other aquatic plants	217.576mg/l	2
	LC50	96h	Fish	1033.016mg/l	2
polystyrene	Endpoint	Test Duration (hr)	Species	Value	Source
	BCF	1344h	Fish	58-144	7
	EC50	48h	Crustacea	36.5mg/l	4
	NOEC(ECx)	504h	Crustacea	0.5mg/l	4
Legend:			ECHA Registered Substances - Ecotoxicological i C Aquatic Hazard Assessment Data 6. NITE (Jaj		

Non-ionic polymers with MWs > 1,000 that do not contain reactive functional groups and are comprised of minimal low MW oligomers are estimated to display no effects at saturation (NES). These polymers display NES because the amount dissolved in water is not anticipated to reach a concentration at which adverse effects may be expressed. Guidance for the assessment of aquatic toxicity hazard results in a Low hazard designation for those materials that display NES. For Silica:

Environmental Fate: Most documentation on the fate of silica in the environment concerns dissolved silica, in the aquatic environment, regardless of origin, (man-made or natural), or structure, (crystalline or amorphous).

Terrestrial Fate: Silicon makes up 25.7% of the Earth's crust, by weight, and is the second most abundant element, being exceeded only by oxygen. Silicon is not found free in nature, but occurs chiefly as the oxide and as silicates. Once released into the environment, no distinction can be made between the initial forms of silica.

Aquatic Fate: At normal environmental pH, dissolved silica exists exclusively as monosilicic acid. At pH 9.4, amorphous silica is highly soluble in water. Crystalline silica, in the form of quartz, has low solubility in water. Silicic acid plays an important role in the biological/geological/chemical cycle of silicon, especially in the ocean. Marine organisms such as diatoms, silicoflagellates and radiolarians use silicic acid in their skeletal structures and their skeletal remains leave silica in sea sediment Ecotoxicity: Silicon is important to plant and animal life and is practically non-toxic to fish including zebrafish, and Daphnia magna water fleas.

For high molecular weight synthetic polymers: (according to the Sustainable Futures (SF) program (U.S. EPA 2005b; U.S. EPA 2012c) polymer assessment guidance.) High MW polymers are expected:

- to have low vapour pressure and are not expected to undergo volatilization .
- · to adsorb strongly to soil and sediment
- · to be non-biodegradable (not anticipated to be assimilated by microorganisms.- therefore, biodegradation is not expected to be an important removal process. However many exceptions exist

High MW polymers are not expected to undergo removal by other degradative processes under environmental conditions

For Metal:

Atmospheric Fate - Metal-containing inorganic substances generally have negligible vapour pressure and are not expected to partition to air.

Environmental Fate: Environmental processes, such as oxidation, the presence of acids or bases and microbiological processes, may transform insoluble metals to more soluble ionic forms. Environmental processes may enhance bioavailability and may also be important in changing solubilities.

Aquatic/Terrestrial Fate: When released to dry soil, most metals will exhibit limited mobility and remain in the upper layer; some will leach locally into ground water and/ or

Aquatic/Terrestrial Fate: When released to dry soil, most metals will exhibit limited mobility and remain in the upper layer; some will leach locally into ground water and/ or surface water ecosystems when soaked by rain or melt ice. A metal ion is considered infinitely persistent because it cannot degrade further. Once released to surface waters and moist soils their fate depends on solubility and dissociation in water. A significant proportion of dissolved/ sorbed metals will end up in sediments through the settling of suspended particles. The remaining metal ions can then be taken up by aquatic organisms. Ionic species may bind to dissolved ligands or sorb to solid particles in water. Ecotoxicity: Even though many metals show few toxic effects at physiological pH levels, transformation may introduce new or magnified effects.

Chromium in the oxidation state +3 (the trivalent form) is poorly absorbed by cells found in microorganisms, plants and animals. Chromate anions (CrO4-, oxidation state +6, the hexavalent form) are readily transported into cells and toxicity is closely linked to the higher oxidation state.

Chromium Ecotoxicology:

Toxicity in Aquatic Organisms:

Chromium is harmful to aquatic organisms in very low concentrations. Fish food organisms are very sensitive to low levels of chromium. Chromium is toxic to fish although less so in warm water. Marked decreases in toxicity are found with increasing pH or water hardness; changes in salinity have little if any effect. Chromium appears to make fish more susceptible to infection. High concentrations can damage and/or accumulate in various fish tissues and in invertebrates such as snails and worms.

Reproduction of Daphnia is affected by exposure to 0.01 mg/kg hexavalent chromium/litre

Toxicity of chromium in fresh-water organisms (50% mortality)*

Toxicity of chromium in fresh-water organisms (50% mortality)*

Compound

Category

Exposure

Toxicity Range (mg/litre)

acute
0.067-59.9

long-term
vertebrate
long-term
0.265-2.0

Most sensitive species scud - fathead minnow

Chemwatch: **7962-66**Page **13** of **16**Version No: **2.1**

PNQ Premixed Concrete Wash Out Waste

Initial Date: 01/07/2025 Revision Date: 01/07/2025

Print Date: **02/07/2025**

trivalent chrome

invertebrate vertebrate

invertebrate

acute long-term acute long-term 2.0-64.0 0.066 33.0-71.9 cladoceran cladoceran guppy fathead minnow

Toxicity in Microorganisms:

In general, toxicity for most microorganisms occurs in the range of 0.05-5 mg chromium/kg of medium. Trivalent chromium is less toxic than the hexavalent form. The main signs of toxicity are inhibition of growth and the inhibition of various metabolic processes such as photosynthesis or protein synthesis. Gram-negative soil bacteria are generally more sensitive to hexavalent chromium (1-12 mg/kg) than the gram-positive types. Toxicity to trivalent chromium is not observed at similar levels. The toxicity of low levels of hexavalent chromium (1 mg/kg) indicates that soil microbial transformation, such as nitrification, may be affected. Chromium should not be introduced to municipal sewage treatment facilities.

Toxicity in Plants: Chromium in high concentrations can be toxic for plants. The main feature of chromium intoxication is chlorosis, which is similar to iron deficiency. Chromium affects carbohydrate metabolism and leaf chlorophyll concentration decreases with hexavalent chromium concentration (0.01-1 mg/l). The hexavalent form appears to more toxic than the trivalent species.

Biological half-life: The elimination curve for chromium, as measured by whole-body counting, has an exponential form. In rats, three different components of the curve have been identified, with half-lives of 0.5, 5.9 and 83.4 days, respectively.

Water Standards: Chromium is identified as a hazardous substance in the Federal (U.S.) Water Pollution Control Act and further regulated by Clean Air Water Act Amendments (US). These regulations apply to discharge. The US Primary drinking water Maximum Contaminant Level (MCL), for chromium, is 0.05 mg/l (total chromium). Since chromium compounds cannot volatilize from water, transport of chromium from water to the atmosphere is not likely, except by transport in windblown sea sprays. Most of the chromium released into water will ultimately be deposited in the sediment. A very small percentage of chromium can be present in water in both soluble and insoluble forms. Soluble chromium generally accounts for a very small percentage of the total chromium. Most of the soluble chromium is present as chromium(VI) and soluble chromium(III) complexes. In the aquatic phase, chromium(III) occurs mostly as suspended solids adsorbed onto clayish materials, organics, or iron oxide (Fe2O3) present in water. Soluble forms and suspended chromium can undergo intramedia transport. Chromium(VI) in water will eventually be reduced to chromium(III) by organic matter in the water. The reduction of chromium(VI) and the oxidation of chromium(III) in water has been investigated. The reduction of chromium(VI) by S-2 or Fe+2 ions under anaerobic conditions was fast, and the reduction half-life ranged from instantaneous to a few days. However, the reduction of chromium(VI) by organic sediments and soils was much slower and depended on the type and amount of organic material and on the redox condition of the water. The reaction was generally faster under anaerobic than aerobic conditions. The reduction half-life of chromium(VI) in vater with soil and sediment ranged from 4 to 140 day. Dissolved oxygen by itself in natural waters did not cause any measurable oxidation of chromium(VIII) to chromium(VII) was added to lake water, a slow oxidation of chromium(VII) to chromium(VII) oxidation of chromium(VIII) to chromium(VIII) to chromium(VIIII) to

The bioconcentration factor (BCF) for chromium(VI) in rainbow trout (Salmo gairdneri) is 1. In bottom feeder bivalves, such as the oyster (Crassostrea virginica), blue mussel (Mytilus edulis), and soft shell clam (Mya arenaria), the BCF values for chromium(III) and chromium(VI) may range from 86 to 192.

The bioavailability of chromium(III) to freshwater invertebrates (Daphnia pulex) decreased with the addition of humic acid. This decrease in bioavailability was attributed to lower availability of the free form of the metal due to its complexation with humic acid. Based on this information, chromium is not expected to biomagnify in the aquatic food chain. Although higher concentrations of chromium have been reported in plants growing in high chromium-containing soils (e.g., soil near ore deposits or chromium-emitting industries and soil fertilized by sewage sludge) compared with plants growing in normal soils, most of the increased uptake in plants is retained in roots, and only a small fraction is translocated in the aboveground part of edible plants. Therefore, bioaccumulation of chromium from soil

to above-ground parts of plants is unlikely. There is no indication of biomagnification of chromium along the terrestrial food chain (soil-plant-animal).

The fate of chromium in soil is greatly dependent upon the speciation of chromium, which is a function of redox potential and the pH of the soil. In most soils, chromium will be present predominantly in the chromium(III) state. This form has very low solubility and low reactivity resulting in low mobility in the environment and low toxicity in living organisms. Under oxidizing conditions chromium(VI) may be present in soil as CrO4?2 and HCrO4-. In this form, chromium is relatively soluble, mobile, and toxic to living organisms. In deeper soil where anaerobic conditions exist, chromium(VI) will be reduced to chromium(III) by S-2 and Fe+2 present in soil. The reduction of chromium(VI) to chromium(III) is possible in aerobic soils that contain appropriate organic energy sources to carry out the redox reaction. The reduction of chromium(VI) to chromium(III) is facilitated by low pH. From thermodynamic considerations, chromium(VI) may exist in the aerobic zone of some natural soil. The oxidation of chromium(III) to chromium(VII) in soil is facilitated by the presence of low oxidisable organic substances, oxygen, manganese dioxide, and moisture. Organic forms of chromium(IIII) to chromium(III) in soil is immobilized due to adsorption and complexation with soil materials, the barrier to this oxidation process is the lack of availability of mobile chromium(III) to immobile manganese dioxide in soil surfaces. Due to this lack of availability of mobile chromium(IIII) to manganese dioxide surfaces, a large portion of chromium in soil will not be oxidized to chromium(VI), even in the presence of manganese dioxide and favorable pH conditions. The microbial reduction of chromium(VI) to chromium(III) in clude biomass concentration, initial chromium(VI) concentration, temperature, pH, carbon source, oxidation-reduction potential and the presence of both oxyanions and metal cations. Although high levels of chromium(VI) are toxic to most microbes, several resistant bacterial species have been identified which could ultimately be

Chromium in soil is present mainly as insoluble oxide Cr2O3. nH2O, and is not very mobile in soil. A leachability study was conducted to study the mobility of chromium in soil. Due to differentpH values, a complicated adsorption process was observed and chromium moved only slightly in soil.

Chromium was not found in the leachate from soil, possibly because it formed complexes with organic matter. These results support previous data finding that chromium is not

Chromium was not found in the leachate from soil, possibly because it formed complexes with organic matter. These results support previous data finding that chromium is not very mobile in soil. These results are supported by leachability investigation in which chromium mobility was studied for a period of 4 years in a sandy loam. The vertical migration pattern of chromium in this soil indicated that after an initial period of mobility, chromium forms insoluble complexes and little leaching is observed. Flooding of soils and the subsequent anaerobic decomposition of plant detritus matters may increase the mobilization of chromium(III) in soils due to formation of soluble complexes. This complexation may be facilitated by a lower soil pH. A smaller percentage of total chromium in soil exists as soluble chromium(VI) and chromium(III), which are more mobile in soil. The mobility of soluble chromium in soil will depend on the sorption characteristics of the soil. The relative retention of metals by soil is in the order of lead > antimony > copper > chromium > zinc > nickel > cobalt > cadmium. The sorption of chromium to soil depends primarily on the clay content of the soil and, to a lesser extent, on Fe2O3 and the organic content of soil. Chromium that is irreversibly sorbed onto soil, for example, in the interstitial lattice of geothite, FeOOH, will not be bioavailable to plants and animals under any condition. Organic matter in soil is expected to convert soluble chromate, chromium(VI), to insoluble chromium(III) oxide, Cr2O3. Chromium in soil may be transported to the atmosphere as an aerosol. Surface runoff from soil can transport both soluble and bulk precipitate of chromium to surface water. Soluble and unadsorbed chromium(VI) and chromium(VI) in the soil increases as the pH of the soil increases. On the other hand, lower pH present in acid rain may facilitate leaching of acid-soluble chromium(VII) and chromium(VII) compounds in soil.

Chromium has a low mobility for translocation from roots to aboveground parts of plants. However, depending on the geographical areas where the plants are grown, the concentration of chromium in aerial parts of certain plants may differ by a factor of 2?3.

In the atmosphere, chromium(VI) may be reduced to chromium(III) at a significant rate by vanadium (V2+, V3+, and VO2+), Fe2+, HSO3-, and As3+. Conversely, chromium(III), if present as a salt other than Cr2O3, may be oxidized to chromium(VI) in the atmosphere in the presence of at least 1% manganese oxide.. However, this reaction is unlikely under most environmental conditions. The estimated atmospheric half-life for chromium(VI) reduction to chromium(III) was reported in the range of 16 hours to about 5 days Microbial methylation plays important roles in the biogeochemical cycling of the metalloids and possibly in their detoxification. Many microorganisms (bacteria, fungi, and yeasts) and animals are now known to biomethylate arsenic, forming both volatile (e.g., methylarsinic) acid and dimethylarion to some extent. Trimethylstibine formation by microorganisms is now well established, but this process apparently does not occur in animals. Formation of trimethylbismuth by microorganisms has been reported in a few cases.

occur in animals. Formation of trimethylbismuth by microorganisms has been reported in a few cases. For Amorphous Silica: Amorphous silica is chemically and biologically inert. It is not biodegradable.

Aquatic Fate: Due to its insolubility in water there is a separation at every filtration and sedimentation process. On a global scale, the level of man-made synthetic amorphous silicas (SAS) represents up to 2.4% of the dissolved silica naturally present in the aquatic environment and untreated SAS have a relatively low water solubility and an extremely low vapour pressure. Biodegradability in sewage treatment plants or in surface water is not applicable to inorganic substances like SAS.

Terrestrial Fate: Crystalline and/or amorphous silicas are common on the earth in soils and sediments, and in living organisms (e.g. diatoms), but only the dissolved form is bioavailable. On the basis of these properties it is expected that SAS released into the environment will be distributed mainly into soil/sediment. Surface treated silica will be wetted then adsorbed onto soils and sediments.

Atmospheric Fate: SAS is not expected to be distributed into the air if released.

Ecotoxicity: SAS is not toxic to environmental organisms (apart from physical desiccation in insects). SAS presents a low risk for adverse effects to the environment.

DO NOT discharge into sewer or waterways.

^{*} from Environmental Health Criteria 61: WHO Publication

Chemwatch: **7962-66** Page **14** of **16**

PNQ Premixed Concrete Wash Out Waste

Initial Date: 01/07/2025 Revision Date: 01/07/2025

Print Date: 02/07/2025

Persistence and degradability

Version No: 2.1

Ingredient	Persistence: Water/Soil	Persistence: Air
water	LOW	LOW
silica gel	LOW	LOW
polystyrene	HIGH	HIGH

Bioaccumulative potential

Ingredient	Bioaccumulation
chromium trioxide	LOW (BCF = 21)
water	LOW (LogKOW = -1.38)
silica gel	LOW (LogKOW = 0.5294)
polystyrene	MEDIUM (BCF = 821)

Mobility in soil

Ingredient	Mobility	
silica gel	LOW (Log KOC = 23.74)	
polystyrene	LOW (Log KOC = 517.8)	

SECTION 13 Disposal considerations

Waste treatment methods

Product / Packaging disposal

- ▶ Containers may still present a chemical hazard/ danger when empty.
- ▶ Return to supplier for reuse/ recycling if possible.

Otherwise:

- If container can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill.
- Where possible retain label warnings and SDS and observe all notices pertaining to the product.
- ▶ DO NOT allow wash water from cleaning or process equipment to enter drains
- It may be necessary to collect all wash water for treatment before disposal.
- In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
- Where in doubt contact the responsible authority.
- Recycle wherever possible or consult manufacturer for recycling options.
- Consult State Land Waste Authority for disposal.
- ▶ Bury or incinerate residue at an approved site.
- Recycle containers if possible, or dispose of in an authorised landfill.

SECTION 14 Transport information

Labels Required

Marine Pollutant	NO
HAZCHEM	Not Applicable

Land transport (ADG): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Air transport (ICAO-IATA / DGR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Sea transport (IMDG-Code / GGVSee): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

14.7. Maritime transport in bulk according to IMO instruments

14.7.1. Transport in bulk according to Annex II of MARPOL and the IBC code

Not Applicable

14.7.2. Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code

Product name	Group
silica crystalline - quartz	Not Available
portland cement	Not Available
chromium trioxide	Not Available
water	Not Available
silica gel	Not Available
polystyrene	Not Available

14.7.3. Transport in bulk in accordance with the IGC Code

14/100 Halloport III balk III doctor dalloc Wall allo 100 0040	
Product name	Ship Type
silica crystalline - quartz	Not Available
portland cement	Not Available
chromium trioxide	Not Available
water	Not Available
silica gel	Not Available
polystyrene	Not Available

PNQ Premixed Concrete Wash Out Waste

Initial Date: 01/07/2025 Revision Date: 01/07/2025 Print Date: 02/07/2025

SECTION 15 Regulatory information

Version No: 2.1

Safety, health and environmental regulations / legislation specific for the substance or mixture

silica crystalline - quartz is found on the following regulatory lists

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals

Australia Model Work Health and Safety Regulations - Hazardous chemicals (other than lead) requiring health monitoring

Australian Inventory of Industrial Chemicals (AIIC)

Chemical Footprint Project - Chemicals of High Concern List

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs - Group 1: Carcinogenic to humans

portland cement is found on the following regulatory lists

Australian Inventory of Industrial Chemicals (AIIC)

chromium trioxide is found on the following regulatory lists

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals

Australia Model Work Health and Safety Regulations - Hazardous chemicals (other than lead) requiring health monitoring

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 6

Australian Inventory of Industrial Chemicals (AIIC)

Chemical Footprint Project - Chemicals of High Concern List

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs - Group 1: Carcinogenic to humans

water is found on the following regulatory lists

Australian Inventory of Industrial Chemicals (AIIC)

silica gel is found on the following regulatory lists

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals

Australian Inventory of Industrial Chemicals (AIIC)

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs - Not Classified as Carcinogenic

International WHO List of Proposed Occupational Exposure Limit (OEL) Values for Manufactured Nanomaterials (MNMS)

polystyrene is found on the following regulatory lists

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 4

Australian Inventory of Industrial Chemicals (AIIC)

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs - Not Classified as Carcinogenic

International WHO List of Proposed Occupational Exposure Limit (OEL) Values for Manufactured Nanomaterials (MNMS)

Additional Regulatory Information

Not Applicable

National Inventory Status

National Inventory	Status
Australia - AIIC / Australia Non- Industrial Use	Yes
Canada - DSL	Yes
Canada - NDSL	No (silica crystalline - quartz; portland cement; chromium trioxide; water; silica gel; polystyrene)
China - IECSC	Yes
Europe - EINEC / ELINCS / NLP	Yes
Japan - ENCS	No (portland cement)
Korea - KECI	Yes
New Zealand - NZIoC	Yes
Philippines - PICCS	No (portland cement)
USA - TSCA	All chemical substances in this product have been designated as TSCA Inventory 'Active'
Taiwan - TCSI	Yes
Mexico - INSQ	Yes
Vietnam - NCI	Yes
Russia - FBEPH	Yes
Legend:	Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory. These ingredients may be exempt or will require registration.

SECTION 16 Other information

Revision Date	01/07/2025
Initial Date	01/07/2025

Other information

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Chemwatch: 7962-66 Page 16 of 16

Version No: 2.1 **PNQ Premixed Concrete Wash Out Waste**

Initial Date: 01/07/2025 Revision Date: 01/07/2025 Print Date: 02/07/2025

Definitions and abbreviations

- ▶ PC TWA: Permissible Concentration-Time Weighted Average
- ▶ PC STEL: Permissible Concentration-Short Term Exposure Limit
- ► IARC: International Agency for Research on Cancer
- ACGIH: American Conference of Governmental Industrial Hygienists
- STEL: Short Term Exposure Limit
- ► TEEL: Temporary Emergency Exposure Limit。
- ▶ IDLH: Immediately Dangerous to Life or Health Concentrations
- ▶ ES: Exposure Standard
- OSF: Odour Safety Factor
- NOAEL: No Observed Adverse Effect Level
- ▶ LOAEL: Lowest Observed Adverse Effect Level
- TLV: Threshold Limit Value
- ▶ LOD: Limit Of Detection
- OTV: Odour Threshold Value
- ▶ BCF: BioConcentration Factors
- ▶ BEI: Biological Exposure Index
- ▶ DNEL: Derived No-Effect Level
- ▶ PNEC: Predicted no-effect concentration
- MARPOL: International Convention for the Prevention of Pollution from Ships
- ► IMSBC: International Maritime Solid Bulk Cargoes Code
- IGC: International Gas Carrier Code
- ▶ IBC: International Bulk Chemical Code
- AIIC: Australian Inventory of Industrial Chemicals
- ▶ DSL: Domestic Substances List
- NDSL: Non-Domestic Substances List
- ▶ IECSC: Inventory of Existing Chemical Substance in China
- ▶ EINECS: European INventory of Existing Commercial chemical Substances
- ▶ ELINCS: European List of Notified Chemical Substances
- NLP: No-Longer Polymers
 ENCS: Existing and New Chemical Substances Inventory
- ▶ KECI: Korea Existing Chemicals Inventory
- ▶ NZIoC: New Zealand Inventory of Chemicals
- ▶ PICCS: Philippine Inventory of Chemicals and Chemical Substances
- ▶ TSCA: Toxic Substances Control Act
- ▶ TCSI: Taiwan Chemical Substance Inventory
- INSQ: Inventario Nacional de Sustancias Químicas
- NCI: National Chemical Inventory
- ▶ FBEPH: Russian Register of Potentially Hazardous Chemical and Biological Substances

This document is copyright.

Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH.

TEL (+61 3) 9572 4700.